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Observational data in the atmosphere indicate that conventionally defined drag and
heat transfer coefficients increase rapidly as wind speed falls. It is shown here that,
at sufficiently low wind speeds, the observed heat flux is nearly independent of wind
speed but the drag increases linearly with it. These findings are not consistent with the
free-convection limit of the Businger relations for Monin–Obukhov theory, and lend
support to the ideas of Ingersoll (1966) and Grachev (1990), till now checked only
against laboratory experiments. We propose here that it is useful to define, within
the regime of mixed convection, a sub-regime of ‘weakly forced convection’ in which,
to a first approximation, the heat flux is determined by temperature differentials
as in free convection and the momentum flux by a perturbation, linear in wind,
on free convection. It is further proposed that this regime is governed by velocity
scales determined by the heat flux (rather than by the friction velocity as in classical
turbulent boundary layer theory). Three candidates for the heat-flux velocity scale
are considered; novel definitions of the drag and heat exchange coefficients, based on
the preferred scale, are found to show very weak dependence on wind speed up to
values of about 5–10 m s−1; but there is some evidence that the usefulness of heat-flux
scaling may extend beyond the velocity limits where pure free-convection scaling for
heat flux is valid.

1. Introduction
A large number of turbulent shear flows in nature as well as in technology are

strongly affected by stratification. In particular, flows in both the oceans and the
atmosphere are stratified due to temperature and/or admixture (salinity or humidity)
gradients. (In the rest of this paper we restrict our attention to temperature gradients.)
The most widely used approach for taking into account the effect of such stratification
on a turbulent boundary layer is based on Monin–Obukhov (M–O) similarity
theory. This theory has been extensively discussed in both the fluid-dynamical and
meteorological literature (Monin 1970; Businger et al. 1971; Haugen 1973; Monin &
Yaglom 1975; Stull 1988 etc.). The key parameter in the theory is the Obukhov length
L, on the basis of which different stability regimes are identified in terms of the ratio
ζ = z/L where z is height above the surface and

L ≡ Cpρ0u
3
∗

kβQs

=
u3

∗

kgαw′T ′
; (1.1)
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here ρ0 is a mean or standard density, Cp is the specific heat at constant pressure,
u∗ is the friction velocity, k is the Kármán constant, β is the buoyancy parameter
(= acceleration due to gravity g times the thermal expansion coefficient α) and Qs

the (sensible) heat flux (= ρ0Cpw′T ′ where w′ is the vertical velocity fluctuation, T ′

the temperature fluctuation, and the overbar denotes a time mean).
It is well known that z/L is related to the local gradient Richardson number (see

e.g. Haugen 1973). The M–O theory has in general received extensive support from
field observations, and is widely used in atmospheric and ocean modelling. However,
there has been much discussion about the place of M–O theory in the limit of free
convection. (See e.g. the contributions of Businger 1973 and Tennekes 1973 in Haugen
1973). In general the observed bulk aerodynamic coefficients increase as wind speed
falls, as noted by Bradley, Coppin & Godfrey (1991) from measurements over the
West Pacific, and by Rao, Narasimha & Prabhu (1996a, b) from measurements over
land. As the latter references point out, the observed fluxes at low winds are much
higher than predicted by the well-known Businger relations for M–O theory.

Indeed, the problem of low-wind fluxes has been of great meteorological interest
for some time, following the finding of Miller, Beljaars & Palmer (1992) that
simulations of tropical climate (including in particular the Indian monsoons) are
substantially better with an enhancement of low-wind fluxes over the values given by
parameterization schemes earlier in use at the European Centre for Medium-range
Weather Forecasts. One common practice of atmospheric modellers to take account
of low-wind conditions has been to introduce a ‘gustiness’ parameter, which replaces
the low surface winds generated in the models by some specified higher value (usually
in the range 1–3 m s−1: see Hack et al. 1993), and continues to use M–O theory at
the specified cut-off velocity. Godfrey & Beljaars (1991), who introduced the concept
of gustiness, proposed including, as an additional component of wind in the bulk
transfer laws for the surface layer, a multiple of the Deardorff free-convection velocity
(Deardorff 1972),

w∗ =

(
gZi

θv

w′θ ′
v

)1/3

, (1.2)

where Zi is the height of the capping inversion in the mixed layer, θv is the virtual
potential temperature averaged between the mixed layer and skin, and θ ′

v is the
fluctuation in the virtual temperature. Beljaars (1994) used this concept to propose
an extension of M–O theory to nearly windless free convection.

Stull (1994) has proposed a different convective transport theory to parameterize
the fluxes in the free-convection limit in terms of the mean characteristics of the
mixed layer and the surface. He proposes that the fluxes are proportional to (i)
an appropriate differential in the relevant mean quantity (temperature, velocity or
relative humidity) between the mixed layer and the skin, and (ii) a buoyancy velocity
scale defined by

wB =

[
gZi

θv

�θB

]1/2

(1.3)

where �θB is an appropriate virtual temperature differential. It should be noted that
wB has no explicit dependence on the flux itself and can have values as high as 30
m s−1 in vigorous convection. It is seen that this proposal, like (1.2), involves the overall
boundary layer parameter Zi; but interestingly, Stull notes that the corresponding
expression for the heat flux is relatively insensitive to measurement errors of Zi .
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The chief purpose of this study is to present an analysis of atmospheric data
which shows that the fluid dynamics of low-wind eddy fluxes in the atmosphere is
best seen as part of the regime called mixed convection (see e.g. Kays & Crawford
1993; Gebhart 1971), which spans the range between the two limits of forced and
free convection. In the former (latter) buoyancy forces are small (large) compared
to inertia forces; the Richardson number is small (negatively large). Within the
mixed convection regime, we wish to identify here a subregime that is close to free
convection but with low winds; we call this nearly free or (preferably) ‘weakly forced’.
The present view is similar to but extends that implicitly taken in a penetrating
analysis by Grachev (1990). Grachev’s analysis made explicit appeal to turbulence
models. The present view produces meaningful scaling laws for heat and momentum
fluxes without explicitly invoking any turbulence model. The main contributions of
the present study are therefore (a) the demonstration that the ad-hoc procedures
now being followed in geophysical models to parameterize low-wind eddy fluxes can
be replaced through the use of a new heat-flux velocity scale that plays the same
conceptual role in flows dominated by thermal convection as the friction velocity
does in nearly neutral flows; and (b) the presentation of the first evidence from
atmospheric data showing the organizing power of the new scales, without appealing
to specfic turbulence models, e.g. those assuming gradient diffusion in some form,
which have for long been subject to the legitimate criticism of making assumptions
that are patently unjustified.

2. Background
The problem of estimating surface heat flux in turbulent convection in the absence

of an overall (superposed) mean flow (which we shall refer to as ‘wind’) has a
long history (Prandtl 1932; Townsend 1964; Deardorff 1972; Businger 1973). Thus,
Townsend (1964) writes the surface heat flux in free convection in the form

Qs = Csρ0Cp

(
g

θ

κ2

ν

)1/3

(�θ)4/3, (2.1)

where κ is the molecular thermal diffusivity, ν the kinematic viscosity and �θ the
difference in potential temperature between the surface and the mixed layer. Cs is
a constant whose value was estimated to be 0.2 by Townsend (1964), and as lying
in the range 0.1 to 0.24 by Deardorff & Willis (1985). Equation (2.1) is equivalent
to the heat flux relation Nu ∼ Ra1/3 in terms of the Nusselt (Nu) and Rayleigh (Ra)
numbers, generally considered appropriate for smooth surfaces.

Niemela et al. (2000) have recently carried out experiments in a helium apparatus
at ultra-high Rayleigh numbers (going up to 1017, approaching values encountered
in the atmosphere), and find that the data are best fitted by the relation Nu ∼ Ra0.31,
which is close to (2.1).

Recently Rao et al. (1996a, b) have shown that atmospheric observations over land
during the experiment known as MONTBLEX-90 (Goel & Srivastav 1990; Sikka &
Narasimha 1995; a detailed account is available in Narasimha, Sikka & Prabhu 1997)
reveal a rapid rise in drag as well as heat exchange coefficient at low winds (although
at different rates). While at higher winds there is good agreement between M–O
theory and observations, at low winds there is substantial disagreement (amounting
to as much as 30 % in the friction velocity u∗ and friction temperature θ∗, for example,
as may be seen from figure 4a, c of Rao et al. 1996a). This shows that M–O theory
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(with the Businger relations) is inadequate in the pure free-convection limit (no mean
cross-wind).

In particular, Rao et al. (1996b) have shown that the sensible heat flux measurements
made during MONTBLEX-90 obey free-convection scaling fairly well, being on the
whole consistent with a 4/3 power law on an appropriate temperature differential,
as in (2.1). It was further shown that the (dimensional) drag depends almost linearly
on wind speed, but the implications of these findings for similarity theory were
not discussed. Since their study, Kondo & Ishida (1997) have also reported a
similar 4/3 power law for the sensible heat flux in laboratory experiments in
natural convection as well as at low winds in the field. Wind tunnel experiments
reported in the engineering literature (see Raju & Narasimha 2003) also provide
data that show that the free-convection law is valid up to a limiting (cross-) flow
velocity, which they express through a criterion on the value of an internal Froude
number.

There have been two precursors of the present results not generally recognized in
the meteorological literature, including in our own earlier work referred to above (and
kindly brought to our attention by a referee). The first is an ingenious experiment
by Ingersoll (1966) on thermal convection between two horizontal disks when the
upper disk rotates about a vertical axis – an arrangement which imposes a shear
flow on the convection. Ingersoll was able to show that the torque on the lower
stationary disk varied linearly with the speed of rotation. It was also found that while
there was a discernible effect of rotation on the Nusselt number, it was generally
not more than 5–6 %. These results are very significant, although the experimental
arrangement provides for a mean velocity that varies linearly with distance from the
axis, and does not of course reproduce the kind of conditions that generally prevail
in the atmosphere.

The second set of studies is due to Grachev (1989, 1990). In the 1989 paper
Grachev used a closure of the turbulent equations to study convection in three
layers, including a molecular heat transfer sublayer, a buffer zone, and a zone
of developed turbulence. Grachev (1990) is closer to the present concerns. It
examines conditions of severe instability when turbulent energy generation by
the velocity shear can be neglected in relation to that by buoyancy forces, and
treats the mean velocity as a passive scalar. Using concepts of eddy viscosity and
conductivity, Grachev derived interesting results to which we shall return later in
this paper. He showed that his model agreed with the laboratory experiments of
Ingersoll (1966), Fukui, Kanajima & Ueda (1983) and Komori et al. (1982), but
considered “an experimental test under full-scale conditions [in the atmosphere] . . .

difficult”. To our knowledge, there is to-date no analysis of observational data
in the atmosphere over land that sheds light on the scaling behaviour in this
regime, which in our view is most appropriate to designate as weakly forced
convection.

In relation to the other proposals discussed in § 1, it is interesting to note the com-
ment of Beljaars (1994) that (in spite of the appearance of Zi in (1.2)) the significant
parameter in determining fluxes is the shape of the profiles close to the surface,
rather than at z � |L|. This suggests that a local similarity theory (which would
necessarily have to be based on different principles) may still be feasible. Another
remarkable finding of Beljaars is that the heat flux results obtained from his M–O
type scheme yield values for the Townsend constant Cs that are in the same range
as found in laboratory experiments. These findings provide pointers to the present
analysis.
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3. Observational data analysed
The data analysed here come from two atmospheric experiments. For the

MONTBLEX data, Rudrakumar, Ameenullah & Prabhu (1995) present a detailed
description of the tower instrumentation, the associated data acquisition system and
the various quality checks adopted to ensure the reliability of acquired data. (We
shall consider the accuracy of the data shortly.) The sensors providing the data were
mounted on a 30 m high guyed uniform triangular lattice structure, with booms fitted
at 6 levels (1, 2, 4, 8, 15, 30 m above the surface). Horizontal arms were attached to
these booms at a distance of about 1.3 m from the body of the tower. The booms could
be partially rotated about the vertical and horizontal axes to facilitate orientation of
the sensors towards the general direction of the prevailing wind and to ensure that
the instrument posts are horizontal.

The data used in the present analysis were acquired at Jodhpur (26◦18′N, 73◦04′E)
over a period extending from 9 June to 20 August 1990. The sonic anemometer (model
SWS-211/3KE, made by Applied Technologies Inc., USA) was placed at a height of
4 m above the surface, the cup anemometers at six heights namely 1, 2, 4, 8, 15 and
30 m, and the platinum wire resistance thermometers at the four heights 1, 8, 15 and
30 m. The sonic anemometer provides wind and virtual temperature fluctuations to a
frequency response of 8 Hz at hourly intervals during intensive observation periods
(Srivastav 1995), otherwise at three-hourly intervals continuously for 10 min (15 min)
from 15 June to 7 July (6–14 June and 8 July–20 August). The total number of data
sets acquired during the period was 676.

It is well known that the accuracy of measured vertical velocities, and hence also of
the eddy fluxes obtained by the direct correlation technique, depends on the accurate
alignment in the vertical of the associated velocity sensors. The alignment was ensured
by a plumb bob that hung over the whole length of the tower. The use of a guyed
mast with an open triangular lattice structure (of approximately 40 cm side), and the
length of the instrument-carrying boom (extending 1.3 m from the body of the tower),
kept flow distortion due to the tower very low. (See pictures of tower and boom
in Narasimha et al. 1997.) The quality of the data is demonstrated by the excellent
agreement between sonic and propeller anemometer velocities, and between the value
of σw (r.m.s. fluctuation of the vertical velocity) measured in the present experiments
and elsewhere under near-neutral conditions (Rudrakumar et al. 1995). Thus, the
momentum function φm from the present measurements lies within the range given
by various earlier authors (Rao et al. 1996b); and the temperature function φθ shows
close agreement with Businger’s formulation (Rao 2004). For all these reasons the
MONTBLEX data analysed here can be considered reliable.

The tower was installed in a farm field, which at the time of the observations
reported here was covered with small pebbles or patches of grass. A detailed
description of the tower site, including estimates of roughness length and description
of prevailing weather, is given by Rao (1996).

The prevailing direction of the wind at the tower was between southeast and west.
The momentum roughness length was estimated at an average value of 1.23 cm in the
sector between 200◦ to 230◦, which was relatively flat with no obstacles on the ground;
this sector will be called the ‘smooth’ sector in the following. In the rest of the site
covered by the prevailing wind directions the roughness length was somewhat higher,
at an average value of 4.5 cm; this will be called the ‘rough’ sector. For estimating the
temperature at the surface required in some of the correlations below, the thermal
roughness height was taken as one order smaller than these values, as recommended
by Garratt (1978).
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During the observation period u∗ occasionally reached a value of about 0.7 m s−1

(being generally lower), z/L varied from −2.5 to +0.5 and sensible heat flux went up
to 400 Wm−2.

Important supplementary data come from the boundary layer field experiment
BLX83 carried out between 26 May and 18 June 1983 near Chickasha, Oklahoma
(35◦02′N, 97◦51′N) using the NCAR aircraft Queenair (Stull 1994). The terrain was
generally flat, with average roughness length of 5 cm. As 24 out of the 28 data points
are characterized by wind speeds less than 10 m s−1 under highly unstable conditions,
BLX83 provides some valuable data on the low-wind convective regime. The mixed
layer depth (or equivalently, the height of the capping inversion) was defined as the
height at which there is a 50–50 mixture of the free atmosphere and mixed layer air,
and was obtained from ground-based lidar during scans along the aircraft track. Eddy
correlation measurements of heat, moisture and momentum fluxes were made during
the near-surface legs of the aircraft track (0.03 < z/Zi < 0.1). Skin parameters were
obtained by a downward-looking radiometer and by an NCAR portable Automated
Mesonet Station.

4. Assessment of M–O similarity at low winds
Based on M–O theory (assuming it is valid), it is possible to estimate both

momentum and sensible heat flux using measured velocity and temperature profiles
and appropriate stability functions such as those proposed e.g. by Businger et al.
(1971). Rao et al. (1996a) have done this, after segregating the MONTBLEX data
on the basis of the value of the mean velocity at 10 m height, U10 (�4 m s−1), and of
the flux Richardson number Rf . They found that while the high-wind, low-instability
data agree well with M–O theory, the low-wind high-instability data (flux Richardson
number Rf < −1.0) show substantial departures, sometimes amounting to as much as
30 % in the friction velocity u∗ (and about 70 % in the drag coefficient).

This can be demonstrated in different ways that are more direct. It must first of
all be realized that plots of the classical non-dimensional temperature gradient φθ of
M–O theory, defined as

φθ (ζ ) =
kz

θ∗

∂T̄

∂z
, θ∗ ≡ − Qs

ρ0cpu∗
,

against the stability parameter −ζ ≡ − z/L, are not sufficiently sensitive tests of the
theory. The data presented by Businger et al. (1971) seem in slightly better agreement
with a (−ζ )−1/2 dependence of φθ for ζ � −0.8 (whereas pure free convection would
require a (−ζ )−1/3 dependence), but while the differences in such a plot do not appear
marked, flux values can be significantly different. The point we are making can be
seen through a direct comparison of observed and theoretically estimated fluxes.
To do this, we first estimate the eddy fluxes from M–O theory, and compare them
with observations. (The M–O estimates are derived from measured values of velocity
and temperature gradients and the similarity functions proposed by Businger et al.
(1971).) Figure 1 shows that the momentum flux so estimated from M–O theory for
MONTBLEX data tends to vary (as may be expected) in proportion to the square of
the wind speed, almost all the way up to U10 ∼ 8 m s−1. We show below (e.g. figure 4)
that observations show a different behaviour (see also Rao et al. 1996a). The heat flux
also shows departures from M–O theory. This is best shown by the analysis of Rao
et al. (1996b), comparing values of the temperature scale θ∗ (defined as −w′θ ′

v/u∗), as
derived from mast profile data using M–O theory, with values measured directly from
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Figure 1. Estimates of drag per unit surface area (stress) provided by Monin–Obukhov
theory for values of mean velocity and temperature gradient derived from measurements in
MONTBLEX-90. Curve shows a least-squares fit to the estimate.
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Figure 2. Comparison between friction temperature θ∗ as derived from mast data using M–O
theory (abcissa) and as measured by the eddy correlation technique. Data from MONTBLEX
90, after Rao et al. (1996b).

the eddy correlation technique. (The profile data are computed assuming an average
value for the roughness height at the site.) A part of these results is shown in figure 2;
note that the data shown here are selected as they are segregated by wind velocity
and flux Richardson number. It is seen that at relatively high winds (>4 m s−1) the
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Qs/(�θ )4/3

Levels (in W, m, K units) Cs

1 and 10 m 145 12.3
1 and 30 m 85.0 7.2
zT and 30 m 25.5 2.17

Table 1. Values of coefficient Cs in (2.1), for different temperature differentials.

measured values of θ∗ are in close agreement with M–O theory estimates, whereas
at wind speeds less than 4 m s−1 in highly unstable conditions (flux Richardson
numbers between −1.0 and −4.0, ζ less than about −0.5) M–O theory appreciably
underestimates the true flux. (We incidentally take this opportunity to point out that
some of the axes on figure 4b, d of Rao et al. (1996a) are mislabelled; the correct
ones, on both abscissa and ordinates, are −0.8 and 0.0 in figure 4b, and −1.2 and −0.2
in figure 4d .)

We now consider each of the fluxes separately.

5. The sensible heat flux
Figure 3(a) shows the heat flux variation with the characteristic temperature

differential �θ taken as the difference between values at 1 m and 30 m above
the surface, the lowest and highest levels at which data are available from the
MONTBLEX tower. (Note that at the relatively small values of z we are considering,
the virtual temperature θ is practically identical with the ordinary temperature T .)
The data collapse fairly well in the plot of Q3/4

s against �θ , as suggested by (2.1),
albeit with some fairly large deviations, especially in the rough sector. The best fit
is Q3/4

s = 29.0(T1 − T30)[±11.6] (here and in what follows this notation stands for the
best fit [± the root mean square deviation]), and the correlation coefficient is 0.88
[0.82–0.93] (the numbers in square brackets indicating the 95 % confidence interval as
determined by Student’s t-test). There is some indication that the heat flux is slightly
different between the rough and smooth sectors, the best fits being

Q3/4
s = 28.0(T1 − T30) [±15.01] (5.1)

and

Q3/4
s = 30.0(T1 − T30) [±8.4] (5.2)

respectively. Note that the scatter in the smooth sector is about half of that in the
rough sector, but the overall heat flux itself is only slightly affected.

The nature of this result is not sensitive to the choice of temperature differential;
thus if we take �θ = TzT

− T30, with zT determined as mentioned in § 3, a plot very
similar to figure 3(a) (not shown here) is obtained, the best fit being

Q3/4
s = 11.0(TzT

− T30) [±24.9]. (5.3)

The values of the coefficient Cs for different choices of temperature differential
are listed in table 1. Note that because the temperature differentials used here are
different from those used by Townsend (1964), Deardorff & Willis (1985) and others,
the numerical value of the factor in (5.1)–(5.3), or in table 1, cannot be directly
compared with those quoted in these earlier references. It is seen that the general
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Figure 3. Observed sensible heat flux as a function of a characteristic temperature differential,
to show the range of a 4/3 power dependence. (a) Data from MONTBLEX. (b) Data from
BLX83, indicating separately low- and high-wind observations. (c, d) Deviations of Qs from
best fit as function of wind speed, data from MONTBLEX (c) and BLX83 (d).

validity of the power law is not dependent on the precise choice of the levels at which
the temperature data are obtained, but the scatter could be less with certain choices.

The scatter seen in figure 3(a) is appreciably smaller than in other analyses of
comparable atmospheric data (see e.g. Miller et al. 1992). We shall now show that
except at the lowest wind speeds where the heat flux seems to depend solely on
the temperature differential, the data suggest a weak higher-order dependence on
wind as well. This can be seen in the data from both MONTBLEX and BLX83. The
parameters available in the latter data-set are the temperature differential DT between
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the skin and the mixed layer, and the mixed layer velocity UML; these are again not
directly comparable to the measurements made as part of MONTBLEX. Points for
surface heat flux Qs are plotted against DT in figure 3(b). It is seen that, while for
wind velocities UML < 5 m s−1 (filled circles) the 4/3 power law agrees reasonably with
the data, at speeds UML > 7.5m s−1 the heat flux at given DT tends to be generally
higher.

That the apparent ‘scatter’ seen in figures 3(a, b) conceals a small but systematic
dependence on wind speed can be seen from figures 3(c, d). We plot here the
departure of the observed heat flux from the 4/3 power law fit at low winds against
wind velocity; each point here represents an average over a bin of width 1.0 m s−1

in the MONTBLEX data and 0.5 m s−1 in the BLX83 data. The deviations in heat
flux are negligible for U10 < 4.5 m s−1 (except for the point at 1.5 m s−1) and for
UML < 6 m s−1 respectively in the two data sets; they increase appreciably at higher
winds. The total number of points at U10 < 4.5 m s−1 in the MONTBLEX data set is
about 60 (distributed among 5 bins), and at UML < 6 m s−1 in the BLX83 data set is
about 14 (distributed among 6 bins).

This conclusion, that the free-convection law for heat flux is applicable even
in situations with limited cross-wind velocities, is in agreement with the trend of
laboratory data on heat flux analysed by Raju & Narasimha (2003). By a reanalysis
of published data on mixed-convection heat transfer rates on cylinders, spheres and
flat plates, they find that, up to a fairly well-defined value of the cross-wind velocity,
the measured Nusselt numbers (Nu) are very close to natural-convection values. The
critical cross-wind velocity is best expressed in terms of an internal Froude number

Fr = U [g��T/Tr ]
−1/2,

where � is a length scale characteristic of the surface in the flow, �T is a characteristic
temperature difference and Tr is a reference temperature. In each of the three flows
they find that data show good collapse in the plane of Nu vs. Fr, and that the free-
convection heat transfer law is valid to within 5 % as long as Fr is below a critical
value that depends on body geometry.

We therefore conclude that the heat flux remains independent of wind speed
at sufficiently low winds, and is determined (to the lowest order) by temperature
differences as in free convection; as the wind speed increases beyond a certain
limiting value defined by a Froude number there is a systematic deviation from the
free-convection law. We shall return to this issue in § 9, but note here that both
laboratory and atmospheric data point to the existence of this sub-regime of what
we have called weakly forced convection within the much broader regime of mixed
convection.

6. The momentum flux
The momentum flux, computed by the eddy correlation technique as −ρU ′w′, where

U ′ is the fluctuation in the horizontal wind speed along the mean wind direction, is
shown as a function of wind speed U10 in figure 4(a), for points from the smooth sector
in the MONTBLEX data set. It is seen that, in contrast to figure 1, the drag varies
linearly with wind speed (0.047U10 [±0.089]) to a very good approximation, certainly
up to wind speeds of about 5 m s−1 (the correlation coefficient is 0.79 [0.69–0.86]). (The
corresponding relation is 0.051U10 [±0.10] in the rough sector and 0.050U10 [±0.097]
overall: the drag is slightly higher in the rough sector. Note that we use the word
‘drag’ to denote drag per unit surface area, i.e. it is equivalent to stress or momentum
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Figure 4. Observed drag as function of wind speed. (a) Data from MONTBLEX, (b) data
from BLX83. In (b) the linear expression is a fit only to observations with UML < 10m s−1 (i.e.
filled circles).

flux.) By comparison with figure 1 it is also clear that virtually all the measured
flux values lie above the M–O prediction curve. Indeed, the momentum flux, and
consequently the drag, does not follow M–O theory but is instead proportional to
the first power of U10 – i.e. (as already pointed out by Rao et al. 1996a), the drag
coefficient CD(≡ U ′w′/U 2

10) ∼ U−1
10 to a first approximation – a result noted by Grachev

(1990) also.
Figure 4(b) shows the BLX83 data. We can see here that the drag (proportional to

u2
∗) increases linearly with UML up to UML � 8 m s−1; at higher wind speeds the drag

increases more rapidly, as may be expected from M–O theory.
Taken together with the result for heat flux shown in figure 3, these results indicate

that wind is acting as a small perturbation to the free-convection regime, producing a
small higher-order effect on the heat flux and generating a first-order momentum flux
as a departure from a pure free-convection regime where the net drag (as a suitable
spatial or ensemble average, see § 9) vanishes at zero wind, i.e. in the absence of a
mean cross-flow velocity.

Furthermore, the measured heat flux shows no systematic variation with measured
momentum flux (Rao 2004).
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We note that the wind velocity at which heat flux deviates from the free-convection
law (U10 � 5 m s−1 in MONTBLEX-90, UML ∼ 8 m s−1 in BLX83; see figure 3c, d) is
about the same as the value at which drag departs from a linear dependence on wind
speed (figure 4a, b). This finding reinforces the present concept that the flow regime
below these limiting velocities may be considered to define a sub-regime of ‘weakly
forced’ convection within the much broader regime of mixed convection. At wind
velocities beyond these values we still have a mixed convection regime.

We can ask whether the weakly forced regime is defined by a value for the Deardorff
velocity scale w∗, given by (1.2). The MONTBLEX data do not have simultaneous
measurements of Zi and heat flux, so precise estimates of w∗ cannot be made.
However, sodar and radio sonde measurements (Gera et al. 1996; Rajkumar et al.
1996) indicate that Zi was generally less than 900 m, but other data tabulated by
the latter sometimes indicate a value of Zi of several thousand metres. If we take
Zi � 1000 m we find that w∗ varies in the range 1.4 to 2.8 m s−1, and with Zi = 2000 m
the range goes up to 2–3 m s−1. This may be compared with the results shown in
figure 3(c), which suggests that the heat flux remains close to the free-convection law
for U10 � 4.5 m s−1.

Another criterion is provided by the departure of measured θ∗ from M–O estimates,
shown in figure 2. Based on a reanalysis of the data presented in Rao et al. (1996a),
this departure is found to begin from z/L � −0.5, which may be taken as another
indicator of the prevalence of free-convection heat flux. These findings suggest the
analysis of the following sections.

7. Grachev’s approach
Before presenting the data it is worthwhile to briefly describe Grachev’s approach.

Grachev (1989) first derives the temperature profile in free turbulent convection by
dividing the whole domain into three layers following Kraichnan (1962), and using
the Prandtl–Kolmogorov K–L model. He finds that the theoretical profiles are in
good agreement with laboratory data.

In a sequel, Grachev (1990) studies the friction law in the free-convection limit,
assuming that the mean velocity can be treated as a passive scalar. Using similarity
arguments he derives a result for the drag in the form

u2
∗ = AuU (βνH )1/4 (7.1)

where u∗ is the friction velocity, Au a constant, U the velocity as z → ∞, and
H = Q/ρ0Cp the kinematic heat flux; the quantity (βνH )1/4 has the dimensions of
velocity, and will be called here the Grachev velocity scale UG. Equivalently, the result
can be expressed in terms of the Ingersoll number, which Grachev defines as

In ≡ u2
∗d

νU

where d (in the case of convection between parallel plates) is half the separation
distance between the plates. Equation (7.1) can then be rewritten as

In = Au

(
Ra Nu

Pr2

)1/4

≡ AuGr1/4,

where Gr is the flux Grashof number. Detailed velocity profiles are also derived, again
by use of a Prandtl–Kolmogorov model. Comparison with the laboratory experiments
of Ingersoll (1966) for the torque, and of Townsend (1972), Fukui et al. (1983) and
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Komori et al. (1982) for the velocity profile, are found to show good agreement.
Grachev considers the possibility of testing his theory against data on the momentum
flux between the air and ocean under conditions of strong instability of the surface
air layer, but concludes that such a test is difficult due to the directional irregularity
of the mean wind at low wind speeds. (We shall however find it is otherwise in the
atmosphere.)

8. The present approach: new velocity scales
The results of § § 4–7 strongly suggest that eddy fluxes at low winds are best seen as

constituting a distinct thermal flow regime of weakly forced convection. We propose
that in this regime, which in the limit has u∗ → 0, U ′w′ → 0 but w′T ′ � 0, the scaling
is driven primarily by the non-vanishing surface heat flux Qs .

Using the heat flux as the primary variable (and not the drag, as in M–O theory),
two new velocity scales may be defined respectively as

Û =
Qs

ρ0cp�θ
(8.1)

and

ˆ̂
U =

T
1/3

ρ0cp

Qs

(�θ)4/3
= Û (�θ/T̄ )−1/3, (8.2)

where T̄ is a suitable average temperature. The velocity scale Û may be seen as a
measure of the vertical velocity that generates the heat flux Qs . The second velocity

scale
ˆ̂
U differs from the first by the factor (T̄ /�θ)1/3, inspired by the 4/3 power law

for the heat flux expressed by equation (2.1).
The relations between these velocity scales are easily written down if we can assume

that the heat flux is given by the free-convection formula (2.1). Noting that β = g/θ ,
and substituting from (2.1), we find

UG ≡ (βνH )1/4 = C1/4
s Pr−1/6(gν)1/3(�θ/θ)1/3, (8.3)

Û = CsPr−2/3(gν)1/3(�θ/θ)1/3

= C3/4
s Pr−1/2UG, (8.4)

and
ˆ̂
U = CsPr−2/3(gν)1/3. (8.5)

It is important to note, however, that to the extent that the actual heat flux may
depart from (2.1) as wind increases (as indicated in figure 3c, d), the relations given
above will cease to hold.

Figure 5 displays the velocity scales we are discussing. Figure 5(a, b) shows Û ,
ˆ̂
U

for the MONTBLEX data as a function of U10. According to (8.5)
ˆ̂
U should be a

constant in pure free convection; figure 5(b) suggests that there might be a weak
increasing trend with U10. Figure 5(c) shows Û for the BLX83 data as a function of
UML, and again there is a weak increasing tendency with wind speed. Figure 5(d , e)
shows the Grachev velocity scale as a function of the present proposed scales. It is
seen that UG does show an approximately linear increase with Û , of the kind that
may be expected from (8.4), but only up to Û ∼ 0.1 m s−1. The value of UG hardly

changes as Û increases to 0.3 m s−1. The correlation of UG with
ˆ̂
U is similar but

weaker.

We shall find below that both the scales Û and
ˆ̂
U may have their uses.
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It is immediately seen that a modified heat exchange coefficient, defined as

ĈH =
Qs

ρ0CpÛ�θ
, (8.6)
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Figure 6. Heat transfer coefficient
ˆ̂
CH , as proposed here, does not vary significantly with

wind speed, but a best-fit power law to MONTBLEX data indicates an exponent of 0.054.

will, by definition, be unity independent of wind speed. Even a coefficient defined as

ˆ̂
CH =

Qs

ρ0Cp
ˆ̂
U�θ

(8.7)

is nearly constant (figure 6), but on closer examination reveals a slow variation with
wind speed, given by the relation

ˆ̂
CH = 0.114(U10/

ˆ̂
U )0.054.

Equations (8.3)–(8.5) may be seen as establishing a connection between the present
heat-flux velocity scales and an intrinsic viscous–gravity velocity scale when heat

transfer is given by free convection: at fixed Prandtl number
ˆ̂
U ∝ (gν)1/3 in this limit.

We retain U ˆˆ as a heat-flux velocity scale that turns out to be of value even when the
heat flux is not strictly given by (2.1) but has the weak dependence on wind shown
in figure 3(c, d).

There is a suggestion in the data that the 4/3-power law of (2.1) may be more
closely obeyed when the temperature differential �θ corresponds to near-surface
values, rather than (say) skin and mixed-layer levels. On the other hand it is likely
that the air temperature T1, at a height of 1 m above ground, gives better results
than the ground or skin temperature Tg , which in reality can be far more spatially
non-homogeneous than the more robust T1, but these suggestions need to be tested
in greater detail by special field measurement campaigns.

We now introduce three new candidates for a definition of the drag coefficient,

ĈD =
D

ρ0Û U0

,
ˆ̂
CD =

D

ρ0
ˆ̂
U U0

, CG
D =

D

ρ0UGU0

, (8.8)

where D = −ρ0U ′w′ represents drag and U0 is a characteristic wind velocity, equal
to U10 in the MONTBLEX measurements and UML in BLX83. These definitions
incorporate the observed linear dependence on wind, and utilize the heat-flux velocity
scales proposed here for non-dimensionalization. Figure 7(a–d) shows the variation of
the newly defined drag coefficients with the appropriately non-dimensionalized wind
speed, for both MONTBLEX and BLX83 data. In presenting MONTBLEX data,
we have rejected measurements for which �θ < 0.05◦C; such a threshold is based on
the limited accuracy of the temperature data, and is within the noise level of the
measurements. From figure 7(a, b) we see that the drag coefficients show a slow rise
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with wind speed,

ĈD � 0.23 + 0.0068(U10/Û ) [±0.29],
ˆ̂
CD = 0.05 + 0.0058(U10/

ˆ̂
U ) [±0.04].

(The corresponding correlation coefficients are 0.60[0.42–0.74] and 0.54[0.33–0.69].)
For the BLX83 data there is hardly any variation with wind speed, and we can write

ĈD = 3.09 [±1.1],
ˆ̂
CD = 0.914 [±0.424].

Figure 7(e) shows the drag normalized using the Grachev scale. The best fit is

CG
D = 0.0059 + 0.89(U10/UG) [±0.58].
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Levels ĈD
ˆ̂
CD

1 and 10 m 0.388 0.057
1 and 30 m 0.589 0.095
zT and 30 m 1.562 0.345

Table 2. Values of drag coefficient defined in present work, using different temperature
differentials for defining heat-flux velocity scale.

The weaker wind dependence and lower scatter of ĈD and
ˆ̂
CD suggest that the new

velocity scales (8.1) and (8.2) are the most appropriate for drag parameterization. The
scaling is effective for both smooth and rough sectors.

The near-independence of ĈD and
ˆ̂
CD of wind speed is preserved irrespective of the

temperature differential used in the definition of the velocity scale; the actual values
of the coefficients however depend on the choice of �T . Table 2 shows the values
obtained from an analysis of MONTBLEX data for three such choices, namely the
differential between 1 and 10 m, 1 and 30 m and zT and 30 m respectively.

It is seen that the range of wind speed over which the weakly forced convection

regime prevails, as determined from the drag, extends at least up to U10/
ˆ̂
U � 18 or

UML/
ˆ̂
U � 300.

It should be pointed out that the above approach for analysing momentum flux
may be applicable only over land. The reason is that, over sea, convection at low
winds may be accompanied by ocean swell, which could result in upward momentum
flux or negative drag (see e.g. Grachev & Fairall 2001).

9. A model-free approach to the low-wind limit
In § 7 we described briefly Grachev’s (1990) approach to convection in the presence

of wind. We present below a perturbation approach to the problem intended to provide
a brief explanation of the observed behaviour of both momentum and sensible heat
fluxes. The explanation is general in the sense that it does not appeal to any specific
turbulence model.

We may begin with the momentum flux. The fluctuating velocity field may be
expanded in a small parameter ε (to be identified below) that characterizes the
low-wind limit:

U ′ = U ′
0 + εU ′

1 + · · · , w′ = w′
0 + εw′

1 + · · · , (9.1)

so that

U ′w′ = U ′
0w

′
0 + ε(U ′

1w
′
0 + U ′

0w
′
1) + O(ε2). (9.2)

In pure free convection (with no cross-wind), neither U ′
0 nor w′

0 will vanish, nor

even the time average U ′
0w

′
0 at a particular station relative to a given convection

system such as e.g. a plume. (Indeed there are theories, such as the one proposed
by Schumann (1988), that attempt to deduce the character of free convection using
ideas of forced convection locally for such time-averages.) However, an appropriate
spatial or ensemble average (denoted by angular brackets), 〈U ′

0w
′
0〉, must vanish

at no wind, for reasons of symmetry: the associated Reynolds stresses will have
different directions at different points but will have to add vectorially to a sum
of zero. Furthermore turbulent free convection is characterized by the intermittent
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break-away, from the hot surface, of thermals or plumes that wander about the
surface (Townsend 1959; Turner 1973). It thus follows that we can write, to O(ε2),

〈U ′w′〉 = ε〈(U ′
1w

′
0 + U ′

0w
′
1)〉, (9.3)

which will in general be proportional to a free-stream velocity such as U10 through U ′
1

and w′
1, which again can have components that correlate with w′

0 and U ′
0. This provides

a plausible explanation for the linear increase in drag with wind speed displayed in
figure 4, and, in the present limit of weakly forced convection, is analogous to
Grachev’s argument that wind acts as a passive scalar.

Making a similar expansion for the heat flux we may write

〈w′T ′〉 = 〈w′
0T

′
0〉 + ε〈(w′

0T
′
1 + w′

1T
′
0)〉 + O(ε2), (9.4)

the difference from the momentum flux being that the first term on the right of
(9.4) definitely does not vanish, being proportional to the free-convection heat flux.
Because of the presence of T ′

1 and w′
1, the term of O(ε) in (9.4) represents in general

a contribution linear in U10, which is a measure of the strength of the perturbation
produced by cross-wind. However, preliminary analysis of data on heat flux presented
in § 5 suggests that, at sufficiently low wind speeds, an O(ε) term linear in U10 may not
be present. This is plausible, for the following reason. In the standard equation for the
temperature field, the additional term that appears in the presence of wind, beyond
those that describe free convection, is the contribution of horizontal advection, which
in standard notation may be written

ū
∂T̄

∂x
+ v̄

∂T̄

∂y
(9.5)

(the vertical advection is present even in free convection). Now if the horizontal
velocity is small, and the horizontal gradient of temperature is also small – as it
tends to be of order 10−5 K m−1 or less in the tropics (as long as the terrain is not
highly non-homogeneous) – the term (9.5) will indeed tend to be of higher order. This
provides a plausible explanation for why the 4/3 power law (2.1) seems to be valid
even at velocities as high as 5 m s−1 or more.

We now identify a quantitative expression for ε. Following the discussion in § 8,
we may take for ε a measure of the vertical component wτ of a shear-induced
velocity relative to a characteristic convective velocity ŵ. Extrapolating from standard
turbulent boundary layer similarity laws it is reasonable to take wτ ∝ u∗, the friction
velocity, which itself is typically of the order of 5 % of U10. In vigorous convection
vertical velocities may be of the order of more than 1 m s−1 – perhaps even 2–5 m s−1

(Garratt 1992, p. 148; note that while ŵ should be proportional to Û , it appears

that it is numerically larger than the values quoted here for Û or even
ˆ̂
U ; we may

therefore assume that ŵ/Û is a fairly large number of order 20).
One criterion for the ‘low-wind’ regime would be

ŵ > wτ ∼ 0.1U10;

with ŵ of order 1 m s−1, this suggests that U10 must be less than about 10 m s−1, which
roughly agrees with the observational evidence analysed in this paper.

More specifically we may write our criterion for prevalence of the ‘weakly forced’
convection regime as

ε ∼ wτ

ŵ
∼ const.

U10

Û
∼ const.

CH

� 1 (9.6)
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where CH is the conventional heat exchange coefficient, and the constant (from the
above discussion) is of order 0.05/20 ∼ 0.002. Interpreting (9.6) as a quantitative
criterion is not without some arbitrariness, as the precise velocity and temperature
differentials that go into CH can be chosen in different ways. We may however
note that, in the MONTBLEX data, CH based on U10 and the temperature difference
between 1 m and 10 m exceeds 0.04 at U10 � 4 m s−1 (Rao et al. 1996b, figure 1), so
the criterion above seems not unreasonable.

These arguments are not intended to be seen as ‘proofs’ in any sense, but do show
that the overall approach adopted here is self-consistent.

10. Conclusion
We confirm here, by an analysis of atmospheric data, that at low wind speeds

classical Monin–Obukhov theory, and in particular its limit as u∗ → 0, is unable to
account for certain major characteristics of the eddy fluxes of momentum and heat.
The observations show that, even at non-negligible wind speeds, the heat flux shows
no strong correlation with wind speed, whereas the momentum flux varies linearly
with wind speed. Monin–Obukhov theory cannot predict these marked features of
the observed fluxes at low winds.

On the other hand, the approach adopted here postulates a regime of weakly forced
or nearly free convection, in which the heat flux depends primarily on temperature
differentials (and on wind only to a higher order), and the momentum flux results
from a linear perturbation on pure free convection with no cross-wind. (A more
detailed theoretical development of this argument will be published separately.) This
suggests new heat-flux-based velocity scales for the flow; the classical friction velocity
u∗, in the limit when it is small, is not the relevant scale in this point of view. Drag
coefficients based on the new heat-flux velocity scales depend weakly or not at all on
wind speed, showing a new kind of scaling in the weakly forced convection regime.
The view implicit in the scaling proposed here is thus that the fluxes can generally
be scaled on the basis of parameters close to the surface; the resulting velocities
determine the overall boundary layer parameters. The temperature differences that
determine the heat flux, however, will themselves be in general influenced by history
and the large-scale environment.

We may finally ask what determines when the wind is sufficiently ‘low’ for the
weakly forced convection regime to prevail. A plausible criterion is that a characteristic
vertical velocity in free convection, say ŵ, must be high compared to the shear-driven
vertical velocity fluctuation (say wτ ) scaled as in the fully forced convection regime.

In the present study it has been possible to analyse only the heat and momentum
fluxes. It is easy to extend the study to cover moisture flux as well, as it closely
follows laws similar to those for the heat flux. It is however necessary to extend the
new similarity theory implicit in the present approach to other flow parameters and
their variation with height; and this calls for new and careful measurements in the
laboratory and in the atmosphere.
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